Table 3. Geometry of the possible hydrogen bonds, distances in (Å) and angles in (°) with e.s.d.'s in parentheses

D-H····A	D····A	H…A	<i>D</i> —H… <i>A</i>
$N1 - H1 - C1(A^{i})$	3.14 (1)	2.16 (10)	166 (4)
N3-H3-···O(1 ⁱ)	2.78 (1)	1.77 (10)	174 (6)
N4H4····Cl(1 ⁱⁱ)	3.12 (1)	2.11 (3)	167 (4)
N5—H52…N(5 ⁱⁱⁱ)	3.48 (1)	2.57 (3)	147 (6)
N7—H71…O(2 ^{iv})	3.01 (2)	2.05 (19)	164 (11)
N7—H72…Cl(B [*])	3.31 (2)	2.64 (6)	122 (8)
O1—H101…Cl(1 ^{iv})	3.22 (1)	2.24 (2)	170 (4)
O1—H201…Cl(<i>B</i> ^{vii})	3.00 (1)	2.33 (6)	130 (5)
O1-H201Cl(B ^{viii})	3.27 (1)	2.49 (7)	143 (5)

Symmetry code: (i) +x, +y, +z - 1; (ii) $+x - \frac{1}{2}$, -y, $+z - \frac{1}{2}$; (iii) -x + 1, -y, -z - 1; (iv) $-x + \frac{1}{2}$, +y, $-z + \frac{1}{2}$; (v) $+x - \frac{1}{2}$, -y + 1, $+z - \frac{1}{2}$; (vi) 1 - x, 1 - y, 1 - z; (vii) -x, 1 - y, 1 - z; (vii) $x - \frac{1}{2}$, 1 - y, $z + \frac{1}{2}$.

The authors are grateful to Dr C. R. Saha and Dr N. K. Roy of the Indian Institute of Technology, Kharagpur, for providing crystals and helpful discussions. They are grateful to Mr S. Chaudhury of RSIC, Bose Institute, for collecting data on the

Enraf-Nonius CAD-4 system. They are also grateful to a referee for various helpful suggestions.

References

- BERTA, D. A., SPOFFORD, W. A. III, BOLDRINI, P. & AMMA, E. L. (1970). Inorg. Chem. 9, 136-142.
- CREITZ, T. C., GSELL, R. & WAMPLER, D. L. (1969). Chem. Commun. pp. 1371-1372.
- GIRLING, R. L. & AMMA, E. L. (1968). Chem. Commun. pp. 1487-1488.
- MOUCHARAFIEH, N. C., ELLER, P. G., BERTRAND, J. A. & ROYER, D. J. (1978). Inorg. Chem. 17, 1220–1228.
- NARDELLI, M. (1983). Comput. Chem. 7, 95-98.
- PAULING, L. (1960). The Nature of the Chemical Bond, 3rd ed., p. 253, Ithaca: Cornell Univ. Press.
- RAY, P., CHOUDHURY, A. K. (1950). J. Ind. Chem. Soc. 27, 673-675.
- ROY, N. K. & SAHA, C. R. (1980). Ind. J. Chem. 19A, 889-892.
- SAHA, C. R. & ROY, N. K. (1983). J. Coord. Chem. 12, 163-176.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- VICKERY, B. L., BRIGHT, D. & MALLINSON, P. R. (1971). XRAYARC. IBM1130 program system for crystallography modified for the Burroughs B6700 computer.

Acta Cryst. (1990). C46, 2068-2070

Structure of Bis- μ -(2-quinolinecarboxylato-O, O, O')bis[triaqua-(2-quinolinecarboxylato-N, O)(2-quinolinecarboxylato-O)neodymium(III)] Trihydrate

BY P. STARYNOWICZ

Institute of Chemistry, The University, 14 F. Joliot-Curie Str., 50383 Wroclaw, Poland

(Received 13 August 1988; accepted 9 February 1990)

Abstract.[{Nd(C₁₀H₆NO₂)₂(H₂O)₃}₂(μ -C₁₀H₆NO₂)₂].-3H₂O, $M_r = 1483.6$, triclinic, PI, a = 15.760 (9), b = 8.178 (6), c = 24.153 (19) Å, $\alpha = 92.54$ (6), $\beta = 99.19$ (6), $\gamma = 109.40$ (6)°, V = 2883 (4) Å³ [reduced cell: a = 8.178 (6), b = 15.154 (12), c = 24.153 (19) Å, $\alpha = 79.05$ (7), $\beta = 87.46$ (6), $\gamma = 78.80$ (6)°], Z = 2, $D_m = 1.70$, $D_x = 1.709$ (2) Mg m⁻³, λ (Mo $K\alpha$) = 0.71069 Å, $\mu = 1.88$ mm⁻¹, F(000) = 1488, T = 302 (1) K, final R = 0.047 for 5110 reflections. The title compound is a dimer; the two Nd ions are bridged by two carboxyl groups. Each Nd ion is surrounded by one N atom, five carboxylic oxygens and three water molecules. Very short Nd—O (carboxyl) bonds [2.320 (7) and 2.325 (7) Å] were found.

Introduction. This work is part of our study on the structures and properties of complexes containing lanthanide–nitrogen bonds.

0108-2701/90/112068-03\$03.00

Experimental. The title compound was prepared by mixing aqueous solutions of NdCl₃ and 2quinolinecarboxylic (quinaldic) acid, and then adding a dilute solution of N-2-hydroxyethylpiperazine-N'-ethanesulfonic acid (HEPES). After a few hours tiny violet plates were formed. Two specimens (0.3×0.4) $\times 0.5 \text{ mm}$ and $0.3 \times 0.3 \times 0.4 \text{ mm}$) were cut from larger crystals. D_m by flotation in C₂H₄Br₂/CHCl₃. Oscillation and Weissenberg photographs showed no symmetry, thus indicating the triclinic system. The structure was successfully refined in space group $P\overline{1}$. Syntex $P2_1$ diffractometer, Mo K α radiation for lattice parameters (14 reflections, $21 < 2\theta < 26^{\circ}$), variable $\theta/2\theta$ scan, $4 < 2\theta < 45^\circ$, two standards every 100 reflections, maximum variation from means 7.1%, 4541 and 1281 intensities respectively measured from the two specimens, 166 common ones used for determination of the scale ratio between the two sets, $R_{int} = 0.028$, after averaging 5110 unique reflec-

© 1990 International Union of Crystallography

Nd1

Nd2

01A

NA ClA

C2A

C3A C4A

C5A

C6A

C8A

C9A C10A

O1B O2B

NR

C1*B* C2*B*

C3B

C4B C5B

C6B

C7B C8B

C9*B* C10*B* O1*C*

02C

C1C

C2C C3C

C4C

C5C C6C

C7C

C8C

C10C O1D

020

ND CID

C2D C3D

C4D

C5D C6D

C7D

C8D C9D

C10D

01*E* 02*E*

NE ClE

C2E

C3E C4E

C5E

C6E C7E

C8E

C9E C10E

O|F

O2F NF

C1F C2F C3F C4F

C5F

C6F

C7F

C8F C9F

C10F

0.7505 (5)

0.3339 (8)

0.7433 (2)

0.046 (3)

WI

W7

tions with $I > 3\sigma(I)$, index range $h \to 15$, $k - 8 \to 7$, l $-25 \rightarrow 25$, no correction for absorption or extinction. Structure was solved with locally modified XTL/ XTLE programs (Syntex, 1976), and refined with SHELX76 (Sheldrick, 1976). Neutral-atom scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV), real and imaginary components of anomalous dispersion included for all non-H atoms. The Nd atoms were located from a Patterson map, the remaining non-H atoms from subsequent difference syntheses; C-bonded hydrogens were placed geometrically, water hydrogens from difference syntheses. Final full-matrix leastsquares refinement based on F (non-H atoms anisotropic, C-bonded hydrogens with fixed positional parameters and common temperature factor, Obonded hydrogens with common temperature factor and constrained positional parameters, the constraint refined as an additional parameter), R = 0.047, wR =0.044, maximum $\Delta/\sigma = 0.32$, $\Delta\rho$ between -1.16 and 2.38 e Å⁻³, the highest peaks around Nd atoms, w = $1/\sigma^2(F)$.

Discussion. Final atomic parameters are given in Table 1, and the geometry of the coordination environment of the Nd ions is shown in Table 2, together with average bond lengths for the quinaldate residues.* The structure consists of the neutral dimer, $bis-\mu$ -(2-quinolinecarboxylato)-bis-[triaquadi(2-quinolinecarboxylato)neodymium(III)], and water of hydration. The ORTEP view (Johnson, 1976) of the complex molecule is given in Fig. 1. The Nd1—Nd2 distance is 4.461 (1) Å. The coordination environments of both metal ions are essentially the same. In each half of the dimer the three quinaldate moieties display different modes of coordination to Nd. The A (or F) moiety is involved in a bidentate carboxyl bridge, in which the two O atoms chelate the metal atom with an additional bond from one of the oxygens to the other metal atom. The B (or D) moiety is bonded through its nitrogen and one of its oxygens. The C (or E) moiety is bonded through one of its oxygens only. The distances Nd-N are longer than usually observed (Sinha, 1976), perhaps due to steric interactions within the complex molecule. The same reason may bring about variation of the Nd-O (water) distances. The steric interactions and the mode of coordination (Dào, 1987) may explain the Nd-O(carboxylic) bond length variation. The Nd1-O1C and Nd2-O1E distances are about

Table 1.	Final atomic	coordinates	and	equivalent	iso-
tropic thermal U factors					

15.00

	$U_{eq} = \frac{1}{3} \sum U_{ij} a_i \cdot a$	[,] * a _i . a _j .	
x	v	Z	$U_{\rm en}({\rm \AA}^2)$
0.69083 (4)	0.08803 (5)	0.80462 (2)	0.0277 (3)
0.89530 (4)	- 0.03637 (5)	0.71833 (2)	0.279 (3)
0.8537 (6)	0.1408 (7)	0.8097 (3)	0.046 (3)
0.9877 (5)	0.0981 (8)	0.8121(2)	0.040(3)
0.9030(0)	0.2427(8) 0.1388(10)	0.8358 (4)	0.033(4)
0.9554 (8)	0.1822 (10)	0.9004 (4)	0.034 (4)
1.0347 (7)	0.1562 (11)	0.9289 (4)	0.036 (4)
1.0550 (7)	0.1930 (12)	0.9864 (4)	0.041 (5)
1.0008 (8)	0.2547 (11)	1.0144 (4)	0.038 (5)
1.0167 (8)	0.2887(13) 0.2455(13)	1.0004 (4)	0.049 (5)
0.8845 (9)	0.3705(13) 0.3705(13)	1.0679 (5)	0.059 (6)
0.8656 (7)	0.3389 (12)	1.0096 (4)	0.046 (5)
0.9229 (7)	0.2774 (10)	0.9832 (4)	0.032 (4)
0.7244 (4)	-0.1621(7)	0.8390(2)	0.037(3)
0.6687(5)	0.0130 (8)	0.9019(3) 0.9142(3)	0.034(3)
0.7228 (7)	- 0.2167 (11)	0.8876 (4)	0.038 (5)
0.6939 (6)	- 0.1173 (10)	0.9302 (3)	0.029 (4)
0.6926 (7)	- 0.1719 (12)	0.9852 (4)	0.042 (5)
0.6355 (7)	-0.0847(13)	1.0081 (4)	0.030(3) 0.038(4)
0.6030(8)	0.1467 (15)	1.0449 (4)	0.056 (5)
0.5748 (8)	0.2763 (15)	1.0282 (4)	0.058 (6)
0 5763 (8)	0.3233 (12)	0.9736 (4)	0.051 (5)
0.6086 (7)	0.2378 (11)	0.9361 (4)	0.041 (5)
0.5449 (5)	0.0996 (11)	0.9525 (3)	0.034(4) 0.042(3)
0.4355(5)	-0.3563(8)	0.7658 (3)	0.061 (4)
0.4169 (5)	0.0406 (9)	0.8137 (3)	0.023 (3)
0.4619 (8)	- 0.2043 (12)	0.7883 (4)	0.033 (5)
0.3886 (7)	-0.1331 (11)	0.7990 (3)	0.030 (5)
0.2379 (8)	-0.2443(11) -0.1771(12)	0.8038(3)	0.032(4)
0.2583 (8)	0.0031 (12)	0.8205 (4)	0.038 (5)
0.1962 (8)	0.0853 (14)	0.8311 (4)	0.049 (5)
0.2249(9)	0.2598 (15)	0.8468 (4)	0.048 (6)
0.3793(8)	0.3009(12) 0.2890(12)	0.8410 (4)	0.043 (5)
0.3526 (8)	0.1060 (12)	0.8244 (3)	0.030 (4)
0.8552 (5)	0.2063 (7)	0.6841 (2)	0.039 (3)
0.8242 (5)	0.37/9(9)	0.6221(3)	0.061(4)
0.8420 (7)	0.0020(9) 0.2491(11)	0.6349 (4)	0.037 (5)
0.8497 (7)	0.1290 (11)	0.5874 (4)	0.037 (4)
0.8282 (8)	0.1618 (12)	0.5314 (4)	0.054 (5)
0.8330 (8)	-0.0763(12)	0.4891(4) 0.5021(4)	0.050 (5)
0.8852 (9)	-0.1852 (14)	0.4602 (4)	0.059 (6)
0.9172 (9)	- 0.3109 (15)	0.4747 (5)	0.065 (6)
0.9404 (8)	- 0.3367 (12)	0.5321 (5)	0.059 (6)
0.9271(7) 0.8926(7)	-0.232(11) -0.1023(11)	0.5593 (3)	0.042(3) 0.033(4)
1.0334 (5)	0.1499 (8)	0.7003 (3)	0.042 (3)
1.1392 (5)	0.4087 (8)	0.7245 (4)	0.074 (4)
1.1627 (6)	0.0131 (9)	0.6818 (3)	0.035 (4)
1.1144 (8)	0.2528(13) 0.1831(11)	0.7079(4) 0.6964(3)	0.030(3) 0.031(5)
1.2777 (8)	0.2943 (12)	0.7015 (4)	0.035 (5)
1.3446 (7)	0.2323 (12)	0.6912 (4)	0.039 (5)
1.3204 (8)	0.0536 (13)	0.6735 (4)	0.038 (5)
1.3565 (8)	-0.0234(13) -0.1983(17)	0.6468 (4)	0.055 (6)
1.2658 (11)	-0.3010 (14)	0.6411 (4)	0.055 (6)
1 1999 (9)	- 0.2353 (12)	0.6525 (4)	0.051 (5)
1.2275 (9)	-0.0507 (12)	0.6699 (3)	0.035 (5)
0.7271 (5)	-0.0986 (7) -0.0018 (9)	0.7030(2)	0.041(3) 0.052(4)
0.6608 (6)	- 0.2695 (9)	0.6071 (3)	0.040 (4)
0 6568 (8)	-0.0718 (11)	0.6851 (4)	0.033 (5)
0.6397 (7)	-0.1364 (12)	0.6232 (4)	0.057 (4)
0.5856 (10)	- 0.0939 (15)	0.5290 (5)	0.003 (0) 0.086 (8)
0.6048 (8)	- 0.2407 (14)	0.5095 (4)	0.056 (5)
0.5903 (10)	- 0.3029 (19)	0.4527 (4)	0.080 (7)
0.6128 (10)	- 0.4424 (18)	0.4380 (4)	0.073 (4)
0.6657 (8)	-0.4693(13)	0.5336 (4)	0.073 (0)
0.6418 (7)	- 0.3265 (12)	0.5502 (4)	0.041 (5)
0.5840 (4)	0.2454 (7)	0.7970(3)	0.043 (3)

^{*} Lists of structure factors, anisotropic thermal parameters, H-atom parameters and hydrogen-bond geometrical parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53045 (38 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1 (cont.)

	x	у	Z	U_{eq} (Å ²)
W3	0.7706 (5)	0.3573 (7)	0.8658 (3)	0.041 (3)
W4	0.8496 (5)	-0.2558 (8)	0.7891 (3)	0.042 (3)
W5	1.0021 (5)	-0.1914 (7)	0.7180 (3)	0.042 (3)
W6	0.8088 (5)	- 0.3284 (7)	0.6697 (2)	0.040 (3)
W7	0.0066 (5)	0-5096 (8)	0.7538 (3)	0.055 (3)
W8	0.4206 (5)	0.4503 (8)	0.2406 (3)	0.061 (3)
W9	0.5982 (6)	0.3703 (10)	0.6650 (3)	0.080 (4)

Fig. 1. Molecular diagram of the complex molecule. The numbering scheme of the ring atoms in the moieties A through F follows the pattern of that for the A moiety. The dashed lines represent the intramolecular hydrogen bonds.

Fig. 2. View of the crystal structure. The dashed lines represent the intermolecular hydrogen bonds.

0.08 Å shorter than the values so far observed in Nd carboxylates (Sinha, 1976; Đào, 1987). The structure is held together by van der Waals interactions, and by a network of intermolecular hydrogen bonds. The crystal packing is shown in Fig. 2.

The author thanks Professor K. Bukietyńska for helpful discussion, and Dr T. Lis for advice and help

Table 2. Distances (Å) and angles (°) for the Nd coordination spheres, together with averaged bond lengths (Å) in the quinaldate moieties

Nd1-O1A $-NB$ $-O1F$ $-W1$ $-W3$ $Nd2-O1A$ $-O1D$ $-O1E$ $-W4$ $-W4$	2-439 (10) 2-793 (7) 2-801 (6) 2-426 (6) 2-428 (6) 2-866 (8) 2-866 (8) 2-415 (6) 2-325 (7) 2-543 (7) 2-543 (7)		Nd1-O1B $-O1C$ $-O2F$ $-W2$ $Nd2-O2A$ $-O1F$ $-W5$	2-426 (6) 2-320 (7) 2-535 (7) 2-564 (6) 2-475 (5) 2-832 (7) 2-521 (8) 2-421 (8)
W6	2.453 (5)			
01B-Nd1-01A NB-Nd1-01A 01C-Nd1-01A	71·4 (3) 101·7 (3) 148·8 (3)		NB—Nd1—O1B O1C—Nd1—O1B	61·6 (3) 78·5 (3)
O1C-NdI- $O1AO1F$ - $Nd1$ - $O1A$	66·9 (3)		O1F-Nd1-O1B	70-4 (2)
O1F-Nd1-NB O2E-Nd1-O1A	131·5 (3) 109·3 (3)		O1F—Nd1— $O1CO2F$ —Nd1— $O1B$	95·7 (3) 106·9 (3)
O2F-Nd1NB	141.2 (3)		02F-Nd1-01C	71.7 (3)
02FNd101F	49·3 (3) 140·1 (3)		W_1 —Nd1—O1B	145.9 (3)
W1-Nd1-NB	92.9 (3)		W1-Nd1-01C	71.1 (3)
W1Nd1O1F	126.9 (3)		W_1 —Nd1—O2 F W_2 —Nd1—O1 B	78·2 (3)
W2-Nd1-NB	144.3 (3)		W2-Nd1-01C	131.8 (3)
W2-Nd1-01F	80·0 (2)		W2-Nd1-O2F	69.6 (3)
W3Nd1	73.9 (3)		W3-Nd1-O1B	113-9 (3)
W3Nd1NB	73.1 (3)		W3-Nd1-01C	127-5 (3)
W3Nd1W1	75.2 (3)		W 3-NuI-O2r	13/4 (3)
W3-Nd1-W2	71.4 (3)			
02A-Nd2-01A	49.0 (3)			
O1D-Nd2-O1A	71-5 (3)		O1DNd2O2A	100.4 (3)
ND - Nd2 - OlA ND - Nd2 - OlD	132·3 (3) 61·2 (3)		ND	143.4 (3)
01E-Nd2-01A	105-9 (3)		O1E-Nd2-O2A	74.8 (3)
O1E - Nd2 - O1D	77·4 (3) 64.9 (3)		O1E - Nd2 - ND O1E - Nd2 - O2A	70.5 (3)
01F-Nd2-01A	71.1 (3)		O1F-Nd2-ND	93·l (3)
01F-Nd2-01E	148.5 (3)			72-0 (3)
W4 - Nd2 - O1A W4 - Nd2 - O1D	137.9 (3)		W4—Nd2—02A W4—Nd2—ND	143.4 (3)
W4-Nd2-01E	135-0 (3)		W4Nd2O1F	73-6 (3)
$W_5 - Nd_2 - OlA$ $W_5 - Nd_2 - OlD$	130·6 (3) 144·7 (3)		W5-Nd2-O2A W5-Nd2-ND	84·7 (3) 94·2 (3)
W5-Nd2-01E	70.3 (3)		W5-Nd2-O1F	139-5 (3)
W5-Nd2-W4	77·0 (3)		W6-Nd2-024	138-6 (3)
W6-Nd2-01D	118-1 (3)		W6-Nd2-ND	74.1 (3)
W6Nd2O1E	125.8 (3)		W6—Nd2—O1F	71.1 (3)
W6-Nd2-W5	72.9 (3)			
	Average	n	Min. value	Max value
CC*	1.388 (31)	 54	1.324 (18)	1.451 (15)
C-C†	1.517 (15)	6	1.499 (13)	1.542 (13)
C—N C—O	1·344 (37) 1·253 (35)	12 12	1·297 (15) 1·206 (14)	1·390 (11) 1·328 (14)
* Bonds within the aromatic rings.				

-C(ring)

in performing the measurements. This work was supported by the Polish Academy of Sciences (project CPBP 01.12).

References

Đào, C. N. (1987). PhD Dissertation, Univ. of Wroclaw, Poland. JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SINHA, S. P. (1976). Struct. Bonding (Berlin), 25, 69-154.
- Syntex (1976). XTL/XTLE Structure Determination System. Syntex Analytical Instruments, Cupertino, California, USA.